Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference
ISBN-10
0133902927
ISBN-13
9780133902921
Category
Computers
Pages
256
Language
English
Published
2015-09-30
Publisher
Addison-Wesley Professional
Author
Cameron Davidson-Pilon

Description

Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes • Learning the Bayesian “state of mind” and its practical implications • Understanding how computers perform Bayesian inference • Using the PyMC Python library to program Bayesian analyses • Building and debugging models with PyMC • Testing your model’s “goodness of fit” • Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works • Leveraging the power of the “Law of Large Numbers” • Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning • Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes • Selecting appropriate priors and understanding how their influence changes with dataset size • Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough • Using Bayesian inference to improve A/B testing • Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Similar books

  • Family History Digital Libraries
    By William Sims Bainbridge

    One named Sara and Timberlake had 11 male workers, 1 female worker, and 4 children workers, so it might have employed the Minor family.

  • Foundation Dreamweaver MX
    By Craig Grannell, Jerome Turner, Matt Stephens

    So here's what we need to do to arrive at our layout: s Create the main table to hold all the page elements. s Deal with the navigation area which is ...

  • Cisco CCNA Certification, 2 Volume Set: Exam 200-301
    By Todd Lammle

    This inclusive, two-book set provides what you need to know to succeed on the new CCNA exam. The set includes Understanding Cisco Networking Technologies: Volume 1 and the CCNA Certification Study Guide: Volume 2.

  • CompTIA Network+ Study Guide: Exam N10-006
    By Todd Lammle

    ... you can use: –a –A –c –n –r –R –S –s All nbtstat switches are case sensitive. Generally speaking, lowercase switches deal with NetBIOS names of hosts, ...

  • CompTIA Network+ Study Guide with Online Labs: N10-007 Exam
    By Todd Lammle, Jon Buhagiar

    ... you can use: –a –A –c –n –r –R –S –s All nbtstat switches are case sensitive. Generally speaking, lowercase switches deal with NetBIOS names of hosts, ...

  • CCNA: Cisco Certified Network Associate FastPass
    By Todd Lammle

    S The S reference point defines the point between the customer router and an ... with the letter E deal with using ISDN on the existing telephone network.

  • Stranger in the Chat Room
    By Todd Hafer, Jedd Hafer

    A sequel to In the Chat Room With God finds a group of teens contacted by a mysterious and increasingly malevolent character who claims to know about their encounters with the Almighty and challenges their beliefs. Original.

  • Error Correction Coding: Mathematical Methods and Algorithms
    By Todd K. Moon

    M M−1∑ k=0 −∞ ∞ k=0 The average energy per signal E s ∫ can be related to the ... we will deal primarily with additive white Gaussian noise (AWGN), ...

  • Security+ Training Guide
    By Todd King

    ... to deal with most , but unfortunately not all , of these potential threats . ... The S / MIME standard implements encryption for message content using ...

  • CCDA: Cisco Certified Design Associate Study Guide: Exam 640-861
    By Todd Lammle, Andy Barkl

    S reference point The S reference point defines the reference point between ... with the letter E deal with using ISDN on the existing telephone network.