Many multiplier theorems of Fourier analysis have analogs for ultraspherical expansions.
... The theory of ultraspherical multipliers " , Mem . Amer . Math . Soc . 9 ( 1977 ) , no . 183 . Darboux G. , " Mémoire sur l'approximation des functions de très - grandes nombres et sur une classe étendue de développements en série " , J ...
Theory of Multipliers in Spaces of Differential Functions
... multipliers. REFERENCES 1. Butzer, P. L., R. J. Nessel, and W. Trebels, On radial MSFourier multipliers. In: Math ... The theory of ultraspherical multipliers. Memoirs, Amer. Math. Soc. 9. (1977), no. 1 83. 3. Cossar, J., A theorem on ...
... The Theory of Ultraspherical Multipliers , Memoirs of Amer . Math . Society 183 ( 1977 ) . 10. Connett , W. C. and Schwartz , A. L .: Product formula , hypergroups and Jacobi polynomials , Bull . Amer . Math . Soc . 22 ( 1990 ) 91-97 ...
... multiplier theorem for Jacobi expansions”. Studia Math. 54, 107 (1975) [153] W.C.Connett and A.L.Schwartz: The theory of ultraspherical multipliers. Mem. 566 Harmonic Analysis on Hypergroups: Approximation and Stochastic Sequences.
... multiplier theory . Indeed , recalling the remark following Theorem 3.19 ... multiplier theory for Fourier expansions in Banach spaces . Considering now ... ultraspherical system multiplier criteria are known , e.g. those of the ...
... operators associated vvitlt a singular diiiierentiol operator. Ncderl. Akad. Wetensch. Indag. Math. 46 {l984'}. no. 3. 299-313. Iltlarlcett. Clemens. Product formulas for Bessel. Whittaker. and Jacobi functions 5'tlIl Bibliogra |5-111"
Re (A) = 1/2 , J. maps H'(R) to L*(R) (this is like an inequality due to Hardy: for f in H*(R) * dy to M'-- ) , I, l and ... of SL(2, R) by remarking that, if 0 < Re(A) < 1 , then "A acts uniformly boundedly on the completion of LP(R) ...
... The theory of ultraspherical multipliers . Mem . AMS , 183 , 1–92 . [ 43 ] ——— , ( 1979 ) The Littlewood - Paley theory for Jacobi expansions . Trans . AMS , 251 , 219– 234 . [ 44 ] Davtyan , A.A. ( 1985 ) Anisotropic potentials , their ...
... The theory of ultraspherical multipliers, Mem. Amer. Math. Soc, No. 183. [1979] The Littlewood-Paley Theory for Jacobi expansions, Trans. Amer. Math. Soc, 251, 219-234. [1990] Product formulas, hypergroups and the Jacobi polynomials ...