This book contains recent results from a group focusing on minimal surfaces in the Moscow State University seminar on modern geometrical methods, headed by A. V. Bolsinov, A. T. Fomenko, and V. V. Trofimov. The papers collected here fall into three areas: one-dimensional minimal graphs on Riemannian surfaces and the Steiner problem, two-dimensional minimal surfaces and surfaces of constant mean curvature in three-dimensional Euclidean space, and multidimensional globally minimal and harmonic surfaces in Riemannian manifolds. The volume opens with an exposition of several important problems in the modern theory of minimal surfaces that will be of interest to newcomers to the field. Prepared with attention to clarity and accessibility, these papers will appeal to mathematicians, physicists, and other researchers interested in the application of geometrical methods to specific problems.
1985, D. Hoffman and W. Meeks, [HoMe1], proved that Costa's surface was embedded; this surface is now known as the Costa-Hoffman-Meeks surface. Moreover, Hoffman and Meeks showed that Costa's surface was just the first in a family of ...
Seifenblasen und andere Minimalflächen - genau besehen von 2 Mathematikern.
This book grew out of lectures presented to students of mathematics, physics, and mechanics by A. T. Fomenko at Moscow University, under the auspices of the Moscow Mathematical Society.