With the recent increase in available computing power, new computations are possible in many areas of arithmetic geometry. To name just a few examples, Cremona's tables of elliptic curves now go up to conductor 120,000 instead of just conductor 1,000, tables of Hilbert class fields are known for discriminant up to at least 5,000, and special values of Hilbert and Siegel modular forms can be calculated to extremely high precision. In many cases, these experimental capabilities haveled to new observations and ideas for progress in the field. They have also led to natural algorithmic questions on the feasibility and efficiency of many computations, especially for the purpose of applications in cryptography. The AMS Special Session on Computational Arithmetic Geometry, held onApril 29-30, 2006, in San Francisco, CA, gathered together many of the people currently working on the computational and algorithmic aspects of arithmetic geometry. This volume contains research articles related to talks given at the session. The majority of articles are devoted to various aspects of arithmetic geometry, mainly with a computational approach.
This is the first volume of the lectures presented at the Clay Mathematics Institute 2014 Summer School, "Periods and Motives: Feynman amplitudes in the 21st century", which took place at the Instituto de Ciencias Matemáticas-ICMAT ...
... Editors, Integer points in polyhedra—geometry, number theory, algebra, optimization, 2005 O. Costin, M. D. Kruskal, and A. Macintyre, Editors, Analyzable functions and applications, 2005 José Burillo, Sean Cleary, Murray Elder, ...
This book provides a complete introduction to the most significant class of L-functions: the Artin-Hecke L-functions associated to finite-dimensional representations of Weil groups and to automorphic L-functions of principal type on the ...
Since the original publication of this book in French (see Astérisque 229, 1995), the field has undergone significant progress. These advances are noted in this English edition. Also, some minor improvements have been made to the text.
... q-series with applications to combinatorics, number theory, and physics, 2001 Michel L. Lapidus and Machiel van Frankenhuysen, Editors, Dynamical, spectral, and arithmetic zeta functions, 2001 Salvador Pérez-Esteva and Carlos Villegas ...
This monograph makes available, in English, the elementary parts of classical algebraic number theory. This second edition follows closely the plan and style of the first edition.
This book is an introduction to algebraic number theory, meaning the study of arithmetic in finite extensions of the rational number field Q . Originating in the work of Gauss, the foundations of modern algebraic number theory are due to ...
An introduction to algebraic number theory for senior undergraduates and beginning graduate students in mathematics.
Let F be a number field.
These two volumes of forty papers present a state-of-the-art description of some of the exciting applications of algebraic $K$-theory to other branches of mathematics, especially algebraic geometry and algebraic number theory.