Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.
K. Iwasaki, H. Kimura, S. Shimomura, M. Yoshida, From Gauss to Painlevé. A Modern Theory of Special Functions, Aspects of Mathematics, E16. Friedr. Vieweg & Sohn, Braunschweig, 1991. H. Kimura, The degeneration of the two-dimensional ...
This book treats the fundamentals of differential geometry: manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann manifolds, isometric actions, and ...
This introductory textbook originates from a popular course given to third year students at Durham University for over twenty years, first by the late L. M. Woodward and later by John Bolton (and others).
This volume is a companion volume to A Short Course in Differential Geometry and Topology and is based on seminars held at Faculty of Mechanics and Mathematics at Moscow State University.
Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry.
This volume, the second of Helgason's impressive three books on Lie groups and the geometry and analysis of symmetric spaces, is an introduction to group-theoretic methods in analysis on spaces with a group action.
[Bax82] R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, Inc. [Harcourt Brace Jovanovich, ... MR3077917 [ChSm11] D. Chelkak and S. Smirnov, Discrete complex analysis on isoradial graphs, Adv. Math.
This volume presents lecture notes of Shing-Tung Yau of Harvard University - based on his extensive recent lecture series in Taiwan and Beijing - on several open problems in differential geometry.
... Nilpotent Structures in Ergodic Theory, 2018 Habib Ammari, Brian Fitzpatrick, Hyeonbae Kang, Matias Ruiz, Sanghyeon Yu, and Hai Zhang, Mathematical and Computational Methods in Photonics and Phononics, 2018 Vladimir I. Bogachev, ...
Handbook of Differential Geometry