Grid Homology for Knots and Links

Grid Homology for Knots and Links
ISBN-10
1470417375
ISBN-13
9781470417376
Category
Homology theory
Pages
410
Language
English
Published
2015-12-04
Publisher
American Mathematical Soc.
Authors
Peter S. Ozsvath, András I. Stipsicz, Zoltan Szabo

Description

Knot theory is a classical area of low-dimensional topology, directly connected with the theory of three-manifolds and smooth four-manifold topology. In recent years, the subject has undergone transformative changes thanks to its connections with a number of other mathematical disciplines, including gauge theory; representation theory and categorification; contact geometry; and the theory of pseudo-holomorphic curves. Starting from the combinatorial point of view on knots using their grid diagrams, this book serves as an introduction to knot theory, specifically as it relates to some of the above developments. After a brief overview of the background material in the subject, the book gives a self-contained treatment of knot Floer homology from the point of view of grid diagrams. Applications include computations of the unknotting number and slice genus of torus knots (asked first in the 1960s and settled in the 1990s), and tools to study variants of knot theory in the presence of a contact structure. Additional topics are presented to prepare readers for further study in holomorphic methods in low-dimensional topology, especially Heegaard Floer homology. The book could serve as a textbook for an advanced undergraduate or part of a graduate course in knot theory. Standard background material is sketched in the text and the appendices.

Other editions

Similar books

  • Lecture Notes on Motivic Cohomology
    By Vladimir Voevodsky, Charles A. Weibel, Carlo Mazza

    The book's purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, étale cohomology, and Chow groups.