Due to the Internet Revolution, human conversational data -- in written forms -- are accumulating at a phenomenal rate. At the same time, improvements in speech technology enable many spoken conversations to be transcribed. Individuals and organizations engage in email exchanges, face-to-face meetings, blogging, texting and other social media activities. The advances in natural language processing provide ample opportunities for these "informal documents" to be analyzed and mined, thus creating numerous new and valuable applications. This book presents a set of computational methods to extract information from conversational data, and to provide natural language summaries of the data. The book begins with an overview of basic concepts, such as the differences between extractive and abstractive summaries, and metrics for evaluating the effectiveness of summarization and various extraction tasks. It also describes some of the benchmark corpora used in the literature. The book introduces extraction and mining methods for performing subjectivity and sentiment detection, topic segmentation and modeling, and the extraction of conversational structure. It also describes frameworks for conducting dialogue act recognition, decision and action item detection, and extraction of thread structure. There is a specific focus on performing all these tasks on conversational data, such as meeting transcripts (which exemplify synchronous conversations) and emails (which exemplify asynchronous conversations). Very recent approaches to deal with blogs, discussion forums and microblogs (e.g., Twitter) are also discussed. The second half of this book focuses on natural language summarization of conversational data. It gives an overview of several extractive and abstractive summarizers developed for emails, meetings, blogs and forums. It also describes attempts for building multi-modal summarizers. Last but not least, the book concludes with thoughts on topics for further development. Table of Contents: Introduction / Background: Corpora and Evaluation Methods / Mining Text Conversations / Summarizing Text Conversations / Conclusions / Final Thoughts
One named Sara and Timberlake had 11 male workers, 1 female worker, and 4 children workers, so it might have employed the Minor family.
So here's what we need to do to arrive at our layout: s Create the main table to hold all the page elements. s Deal with the navigation area which is ...
This inclusive, two-book set provides what you need to know to succeed on the new CCNA exam. The set includes Understanding Cisco Networking Technologies: Volume 1 and the CCNA Certification Study Guide: Volume 2.
... you can use: –a –A –c –n –r –R –S –s All nbtstat switches are case sensitive. Generally speaking, lowercase switches deal with NetBIOS names of hosts, ...
... you can use: –a –A –c –n –r –R –S –s All nbtstat switches are case sensitive. Generally speaking, lowercase switches deal with NetBIOS names of hosts, ...
S The S reference point defines the point between the customer router and an ... with the letter E deal with using ISDN on the existing telephone network.
A sequel to In the Chat Room With God finds a group of teens contacted by a mysterious and increasingly malevolent character who claims to know about their encounters with the Almighty and challenges their beliefs. Original.
M M−1∑ k=0 −∞ ∞ k=0 The average energy per signal E s ∫ can be related to the ... we will deal primarily with additive white Gaussian noise (AWGN), ...
... to deal with most , but unfortunately not all , of these potential threats . ... The S / MIME standard implements encryption for message content using ...
S reference point The S reference point defines the reference point between ... with the letter E deal with using ISDN on the existing telephone network.