For the past 25 years the theory of pseudodifferential operators has played an important role in many exciting and deep investigations into linear PDE. Over the past decade, this tool has also begun to yield interesting results in nonlinear PDE. This book is devoted to a summary and reconsideration of some used of pseudodifferential operator techniques in nonlinear PDE. One goal has been to build a bridge between two approaches which have been used in a number of papers written in the last decade, one being the theory of paradifferential operators, pioneered by Bony and Meyer, the other the study of pseudodifferential operators whose symbols have limited regularity. The latter approach is a natural successor to classical devices of deriving estimates for linear PDE whose coefficients have limited regularity in order to obtain results in nonlinear PDE. After developing the requisite tools, we proceed to demonstrate their effectiveness on a range of basic topics in nonlinear PDE. For example, for hyperbolic systems, known sufficient conditions for persistence of solutions are both sharpened and extended in scope. In the treatment of parabolic equations and elliptic boundary problems, it is shown that the results obtained here interface particularly easily with the DeGiorgi-Nash-Moser theory, when that theory applies. To make the work reasonable self-contained, there are appendices treating background topics in harmonic analysis and the DeGiorgi-Nash-Moser theory, as well as an introductory chapter on pseudodifferential operators as developed for linear PDE. The book should be of interest to graduate students, instructors, and researchers interested in partial differential equations, nonlinear analysis in classical mathematical physics and differential geometry, and in harmonic analysis.
[ 259 ] J . W . Thomas . Numerical partial differential equations : finite difference methods , volume 22 of Texts in Applied Mathematics . Springer - Verlag , New York , 1995 . [ 260 ] J . W . Thomas . Numerical partial differential ...
In the case of the superconductivity Ginzberg - Landau functional ( 5 ) of example 3 it is of great importance to investigate the case of Type II superconductivity that occurs exactly when X > 1. It is known physically that new ...
... Ga(U) + Mago (U) = 0, o, 3 = 1, . . . , m, for any U e O. A direct consequence of (2.3) is that, classical or even weak, Solutions of the Cauchy problem for (2.1) satisfy identically the equation (2.4) so Moč), U(ac, t) = 0, ...
20 (1976), 369–388. , Admissible solutions of hyperbolic conservation laws, Memoirs of the American Mathematical Society, Vol. 30, No. 240, 1981. [19] T.-P. Liu and T. Yang, Uniform L1 boundedness of solutions of hyperbolic conservation ...
Pseudodifferential Operators and Nonlinear PDE
This book presents the proceedings of a conference on geometry and nonlinear partial differential equations dedicated to Professor Buqing Su in honor of his one-hundredth birthday.
This volume contains survey lectures in four different areas, delivered by leading researchers at the 1995 Barrett Lectures held at the University of Tennessee: nonlinear hyperbolic systems arising in field theory and relativity (S.
This timely book reviews how South Asia is rising to the challenge of globalization. In particular, how are South Asian countries maximizing the benefits of globalization whilst minimizing its costs?
T. Kapitula and K. Promislow, Spectral and dynamical stability of nonlinear waves, Applied Mathematical Sciences, vol. 185, Springer, New York, 2013. A. N. Kolmogorov, I. G. Petrovsky, and N. S. Piskunov, Etude de l'équation de la ...
Nonlinear Partial Differential Equations and Their Applications: College de France Seminars