1. Topological Spaces and Topological Linear Spaces.- 1.1. Metric Spaces.- 1.2. Compactness in Metric Spaces. Measures of Noncompactness.- 1.3. Baire Category Theorem.- 1.4. Topological Spaces.- 1.5. Linear Topological Spaces. Locally Convex Spaces.- 2. Hilbert spaces and Banach spaces.- 2.1. Normed Spaces. Banach Spaces.- 2.2. Hilbert Spaces.- 2.3. Convergence in X, X* and L(X).- 2.4. The Adjoint of an Operator.- 2.5. Classes of Banach Spaces.- 2.6. Measures of Noncompactness in Banach Spaces.- 2.7. Classes of Special Operators on Banach Spaces.- 3. The Contraction Principle.- 3.0. Introduction.- 3.1. The Principle of Contraction Mapping in Complete Metric Spaces.- 3.2. Linear Operators and Contraction Mappings.- 3.3. Some Generalizations of the Contraction Mappings.- 3.4. Hilbert's Projective Metric and Mappings of Contractive Type.- 3.5. Approximate Iteration.- 3.6. A Converse of the Contraction Principle.- 3.7. Some Applications of the Contraction Principle.- 4. Brouwer's Fixed Point Theorem.- 4.0. Introduction.- 4.1. The Fixed Point Property.- 4.2. Brouwer's Fixed Point theorem. Equivalent Formulations.- 4.3. Robbins' Complements of Brouwer's Theorem.- 4.4. The Borsuk-Ulam Theorem.- 4.5. An Elementary Proof of Brouwer's Theorem.- 4.6. Some Examples.- 4.7. Some Applications of Brouwer's Fixed Point Theorem.- 4.8. The Computation of Fixed Points. Scarf's Theorem.- 5. Schauder's Fixed Point Theorem and Some Generalizations.- 5.0. Introduction.- 5.1. The Schauder Fixed Point Theorem.- 5.2. Darbo's Generalization of Schauder's Fixed Point Theorem.- 5.3. Krasnoselskii's, Rothe's and Altman's Theorems.- 5.4. Browder's and Fan's Generalizations of Schauder's and Tychonoff's Fixed Point Theorem.- 5.5. Some Applications.- 6. Fixed Point Theorems for Nonexpansive Mappings and Related Classes of Mappings.- 6.0. Introduction.- 6.1. Nonexpansive Mappings.- 6.2. The Extension of Nonexpansive Mappings.- 6.3. Some General Properties of Nonexpansive Mappings.- 6.4. Nonexpansive Mappings on Some Classes of Banach Spaces.- 6.5. Convergence of Iterations of Nonexpansive Mappings.- 6.6. Classes of Mappings Related to Nonexpansive Mappings.- 6.7. Computation of Fixed Points for Classes of Nonexpansive Mappings.- 6.8. A Simple Example of a Nonexpansive Mapping on a Rotund Space Without Fixed Points.- 7. Sequences of Mappings and Fixed Points.- 7.0. Introduction.- 7.1. Convergence of Fixed Points for Contractions or Related Mappings.- 7.2. Sequences of Mappings and Measures of Noncompactness.- 8. Duality Mappings and Monotone Operators.- 8.0. Introduction.- 8.1. Duality Mappings.- 8.2. Monotone Mappings and Classes of Nonexpansive Mappings.- 8.3. Some Surjectivity Theorems on Real Banach Spaces.- 8.4. Some Surjectivity Theorems in Complex Banach Spaces.- 8.5. Some Surjectivity Theorems in Locally Convex Spaces.- 8.6. Duality Mappings and Monotonicity for Set-Valued Mappings.- 8.7. Some Applications.- 9. Families of Mappings and Fixed Points.- 9.0. Introduction.- 9.1. Markov's and Kakutani's Results.- 9.2. The Ryll-Nardzewski Fixed Point Theorem.- 9.3. Fixed Points for Families of Nonexpansive Mappings.- 9.4. Invariant Means on Semigroups and Fixed Point for Families of Mappings.- 10. Fixed Points and Set-Valued Mappings.- 10.0 Introduction.- 10.1 The Pompeiu-Hausdorff Metric.- 10.2. Continuity for Set-Valued Mappings.- 10.3. Fixed Point Theorems for Some Classes of Set-valued Mappings.- 10.4. Set-Valued Contraction Mappings.- 10.5. Sequences of Set-Valued Mappings and Fixed Points.- 11. Fixed Point Theorems for Mappings on PM-Spaces.- 11.0. Introduction.- 11.1. PM-Spaces.- 11.2. Contraction Mappings in PM-Spaces.- 11.3. Probabilistic Measures of Noncompactness.- 11.4. Sequences of Mappings and Fixed Points.- 12. The Topological Degree.- 12.0. Introduction.- 12.1. The Topological Degree in Finite-Dimensional Spaces.- 12.2. The Leray-Schauder Topological Degree.- 12.3. Leray's Example.- 12.4. The Topological Degree for k-Set Contractions.- 12.5. The Uniqueness Problem for the Topological Degree.- 12.6. The Computation of the Topological Degree.- 12.7. Some Applications of the Topological Degree.
In Section 2 we will deal with the “discrete” case. Let S be a locally finite tree T endowed with the natural integer-valued distance function: the ...
... for in this case [yp](s)=s[yp](s), [yp](s)=s2[yp](s). As we will see in the examples, this assumption also makes it possible to deal with the initial ...
x,y∈S δ(x,y) is maximum. u(x) + ADDITIVE SUBSET CHOICE Input: A set X = {x1 ,x2 ... F Tractability cycle Test 8.2 How (Not) to Deal with Intractability 173.
Several versions of Pearson's MyLab & Mastering products exist for each title, including customized versions for individual schools, and registrations are not transferable.
Mymathlab Student Acc Kit + Intro Alg Wrkshts
Pearson Mathematics homework program for Year 7 provides tear-out sheets which correspond with student book sections, providing systematic and cumulative skills revision of basic skills and current class topics in the form of take-home ...
Worksheets for Classroom Or Lab Practice for Intermediate Algebra: Graphs & Models
The Student Book provides an easy-to-use 'nuts and bolts' book at each year level.
... partial differential equations have received a great deal of attention. For excellent bibliographical coverage, see Todd (1956), Richtmyer (1957), ...
Todd, P. A., McKeen, .l. ... ANALYTICAL SUPPORT PROBLEM SOLVING Cognitive Perspectives on Modelling HOW DO STUDENTS AND TEACHERS DEAL Sodhi and Son 219 NOTE ...