B ̈urgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Grundlehren der mathematischen Wissenschaften, Vol. 315, Springer Verlag, 1997. 5. Cheraghchi, M.: On Matrix Rigidity and the Complexity of Linear Forms.
Theory and Applications of Models of Computation
... Xiaoshuang 760 Xu, Yatao 100 Xu, Zhiwei 715 Yamasaki, Hitoshi 67 Yang, Bing 46 Yang, Boting 136 Yang, Shih-Cheng 274 Yang, Yi-Chuan 244 Yao, Andrew C.C. 462, 474 Yao, Frances F. 284, 462, 474 Yi, Jin 374 Yoneda, Harumasa 511 Yong, ...
Directions in recursion theory, pp. 1–60. Cambridge University Press, Cambridge (1996) [ASM97] Ambos-Spies, K., Mayordomo, E.: Resource-bounded measure and randomness. In: Sorbi, A. (ed.) Complexity, Logic and Recursion Theory, pp.
Furthermore, for a tuple the ̄b from formula L, φ ̄a ( is logically equivalent to a computable Σ2β+1 formula. We use the effective procedure for ... Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hierarchy.
If no such i exists, then s is a halting state for f, and we will establish the convention that Ff(s) = s. The FracTran program f computes a partial function Ff(x) by starting with state s0 = 2x+1, and halting in state 3Ff(x)+1.