This book, like the first and second editions, addresses the fundamental principles of interaction between radiation and matter and the principles of particle detection and detectors in a wide scope of fields, from low to high energy, including space physics and medical environment. It provides abundant information about the processes of electromagnetic and hadronic energy deposition in matter, detecting systems, performance of detectors and their optimization. The third edition includes additional material covering, for instance: mechanisms of energy loss like the inverse Compton scattering, corrections due to the Landau–Pomeranchuk–Migdal effect, an extended relativistic treatment of nucleus–nucleus screened Coulomb scattering, and transport of charged particles inside the heliosphere. Furthermore, the displacement damage (NIEL) in semiconductors has been revisited to account for recent experimental data and more comprehensive comparisons with results previously obtained. This book will be of great use to graduate students and final-year undergraduates as a reference and supplement for courses in particle, astroparticle, space physics and instrumentation. A part of the book is directed toward courses in medical physics. The book can also be used by researchers in experimental particle physics at low, medium, and high energy who are dealing with instrumentation. Errata(s) Errata Contents:Electromagnetic Interaction of Radiation in MatterNuclear Interactions in MatterRadiation Environments and Damage in Silicon SemiconductorsScintillating Media and Scintillator DetectorsSolid State DetectorsDisplacement Damage and Particle Interactions in Silicon DevicesGas Filled ChambersPrinciples of Particle Energy DeterminationSuperheated Droplet (Bubble) Detectors and CDM SearchMedical Physics Applications Readership: Researchers, academics, graduate students and professionals in accelerator, particle, astroparticle, space, applied and medical physics. Keywords:Interactions Between Radiation/Particles and Matter;High;Intermediate and Low Energy Particle Physics;Medical Physics;Radiation/Particle Detection;Space Physics;Detectors;Semiconductors;Calorimeters;Chambers;Scintillators;Silicon Pixels;Radiation Damage;Single Event Effects;Solar CellsKey Features:Covers state-of-the-art detection techniques and underlying theoriesAddresses topics of considerable use for professionals in medical physics, nuclear engineering, and environmental studiesContains an updated reference table set of physical properties
This new edition introduces more problem-solving strategies and new conceptual and challenge problems. Also, each Chapter Review has been enhanced with Learning Goals to reinforce the mastery of concepts for students.
This laboratory manual contains 42 experiments for the standard sequence of topics in general, organic, and biological chemistry.
The book guides students through basic chemistry problem solving with engaging visuals and a focus on developing the math skills necessary to be successful in the course.
The full text downloaded to your computer With eBooks you can: search for key concepts, words and phrases make highlights and notes as you study share your notes with friends eBooks are downloaded to your computer and accessible either ...
Basic Chemistry
Basic Chemistry, Books a la Carte Edition
Essential Laboratory Manual for General, Organic and Biological Chemistry
The main objective in writing this text is to make the study of chemistry an engaging and a positive experience for students by relating the structure and behaviour of matter to real life.
The eText pages look exactly like the printed text, and include powerful interactive and customization functions. This is the product access code card for MasteringChemistry with Pearson eText and does not include the actual bound book.
Health, Environmental, and Green Chemistry Notes throughout the text relate chemistry chapters to real-life topics in health, the environment, and medicine that are interesting and motivating to students.